Statistical shape analysis of anatomical structures

نویسنده

  • Polina Golland
چکیده

In this thesis, we develop a computational framework for image-based statistical analysis of anatomical shape in different populations. Applications of such analysis include understanding developmental and anatomical aspects of disorders when comparing patients vs. normal controls, studying morphological changes caused by aging, or even differences in normal anatomy, for example, differences between genders. Once a quantitative description of organ shape is extracted from input images, the problem of identifying differences between the two groups can be reduced to one of the classical questions in machine learning, namely constructing a classifier function for assigning new examples to one of the two groups while making as few mistakes as possible. In the traditional classification setting, the resulting classifier is rarely analyzed in terms of the properties of the input data that are captured by the discriminative model. In contrast, interpretation of the statistical model in the original image domain is an important component of morphological analysis. We propose a novel approach to such interpretation that allows medical researchers to argue about the identified shape differences in anatomically meaningful terms of organ development and deformation. For each example in the input space, we derive a discriminative direction that corresponds to the differences between the classes implicitly represented by the classifier function. For morphological studies, the discriminative direction can be conveniently represented by a deformation of the original shape, yielding an intuitive description of shape differences for visualization and further analysis. Based on this approach, we present a system for statistical shape analysis using distance transforms for shape representation and the Support Vector Machines learning algorithm for the optimal classifier estimation. We demonstrate it on artificially generated data sets, as well as real medical studies. Thesis Supervisor: W. Eric L. Grimson Title: Bernard Gordon Professor of Medical Engineering Readers: Tomás Lozano-Pérez William (Sandy) M. Wells III Ron Kikinis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Sample Size Learning for Shape Analysis of Anatomical Structures

We present a novel approach to statistical shape analysis of anatomical structures based on small sample size learning techniques. The high complexity of shape models used in medical image analysis, combined with a typically small number of training examples, places the problem outside the realm of classical statistics. This difficulty is traditionally overcome by first reducing dimensionality ...

متن کامل

Probabilistic Multi - Label Representations for Anatomical Statistical Shape Analysis

Several sources of uncertainties in shape boundaries in medical images have motivated the use of probabilistic labeling approaches. Being able to perform statistical analysis on these probabilistic multi-shape representations is important in understanding normal and pathological geometrical variability of anatomical structures. By making use of methods for dealing with what is known as composit...

متن کامل

Morphometry of anatomical shape complexes with dense deformations and sparse parameters

We propose a generic method for the statistical analysis of collections of anatomical shape complexes, namely sets of surfaces that were previously segmented and labeled in a group of subjects. The method estimates an anatomical model, the template complex, that is representative of the population under study. Its shape reflects anatomical invariants within the dataset. In addition, the method ...

متن کامل

Multi-structure network shape analysis via normal surface momentum maps

We present a shape analysis pipeline for the assessment of anatomical variations in subcortical networks in MR images. The shape analysis pipeline injects the global shape properties of the CFA subcortical template into the subcortical parcellations generated from FreeSurfer via large deformation diffeomorphic metric mapping (LDDMM). Examples are shown for this injection in several subcortical ...

متن کامل

Statistical shape models for segmentation and structural analysis

Biomedical imaging of large patient populations, both cross-sectionally and longitudinally, is becoming a standard technique for noninvasive, in-vivo studies of the pathophysiology of diseases and for monitoring drug treatment. In radiation oncology, imaging and extraction of anatomical organ geometry is a routine procedure for therapy planning an monitoring, and similar procedures are vital fo...

متن کامل

Estimation of Probability Distribution on Multiple Anatomical Objects and Evaluation of Statistical Shape Models

Ja-Yeon Jeong: Estimation of Probability Distribution on Multiple Anatomical Objects and Evaluation of Statistical Shape Models (Under the direction of Stephen M. Pizer) The estimation of shape probability distributions of anatomic structures is a major research area in medical image analysis. The statistical shape descriptions estimated from training samples provide means and the geometric sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001